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Abstract

This paper summarizes recent advances in the understanding of the exchange of Hg between the atmosphere and nat-
ural terrestrial surfaces including substrates (soil, rocks, litter-covered surfaces and weathered lithological material) and
foliage. Terrestrial landscapes may act as new sources of atmospheric Hg, and as repositories or temporary residences
for anthropogenically and naturally derived atmospheric Hg. The role of terrestrial surfaces as sources and sinks of atmo-
spheric Hg must be quantified in order to develop regional and global Hg mass balances, and to assess the efficacy of reg-
ulatory controls on anthropogenic point sources in reduction of human Hg exposure.

Continued field research has allowed for refinement of emission estimates for geothermal and volcanic, and Hg miner-
alized areas in the western USA to �1.2–3.0, and 10–20 Mg/a, respectively. The emission estimate for areas of Hg
mineralization in the western USA includes only identified Hg deposits and occurrences, and since other areas of geologic
Hg enrichment such as Au and Ag deposits are not considered, the range in values is most likely an underestimate. Lab-
oratory and field measurements have improved understanding of air–surface Hg exchange associated with soils with low or
natural background concentrations of Hg (<100 ppb), litter-covered forest floors, and foliar surfaces, all of which have
large spatial coverage. Deposition of atmospheric Hg and re-emission are important processes occurring at these surfaces
on diel and seasonal time scales. Foliage is a significant sink for atmospheric elemental Hg, however, the net flux associated
with low Hg containing soils is uncertain. Mass balances developed for soil–air exchange using measured fluxes and esti-
mated deposition indicate that over a year background soils may exhibit no net flux. This suggests that the residence time
for elemental Hg in the air is on the order of hours to weeks. Short term exchange would result in a homogenous air Hg
concentration due to constant mixing and in an apparent calculated residence time that is most likely too long (one year).
Recycling of atmospheric Hg between natural background soils and foliar surfaces also provides a mechanism for long-
term atmospheric contamination and continued deposition in pristine ecosystems well after anthropogenic sources are
controlled.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural emissions of Hg to the atmosphere occur
from areas with ongoing geologic activity (volcanic
and geothermal) and from substrates with elevated
.
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Hg concentrations (>100 ppb) due to mineralization
as a result of geologic processes that occurred in the
past. Geologically-derived naturally Hg-enriched
areas are in general concentrated in broad global
belts that coincide with major plate tectonic bound-
aries (cf. Pennington, 1959; Johanson and Boyle,
1972). However, there are Hg-enriched areas out-
side these boundaries, i.e. areas of Fe mineralization
in Michigan and Zn mineralization in Missouri and
Canada (Rytuba, 2003, 2005) and Siberia (Obolen-
skiy, 1996). Some component of emission from
these naturally enriched areas includes re-emission
of Hg deposited from the atmosphere.

Other ‘‘natural” terrestrial sources of atmo-
spheric Hg include emission from background or
low-Hg containing soils/substrates (<100 ppb) and
foliar surfaces, and biomass burning. Emission from
these sources is hypothesized to be predominantly
re-emission of Hg deposited from the air by wet
and dry processes derived from both anthropogenic
and natural sources. Important identified natural
sinks for atmospheric Hg are soils, plant foliage,
and regions where the atmospheric chemistry facili-
tates formation of reactive gaseous Hg (RGM) (i.e.
polar regions, marine boundary layer).

Estimates of global natural source emissions
range from 800 to 3000 Mg/a (Nriagu, 1989; Lindq-
vist et al., 1991; Mason and Sheu, 2002; Seigneur
et al., 2001). Although estimates for individual
anthropogenic point source emissions have an
uncertainty of up to 50% (Pai et al., 1998; Pacyna
et al., 2001), the range in published values for global
anthropogenic releases (�2000–2400 Mg/a) is small
compared to that reported for natural sources. Gus-
tin and Lindberg (2005) indicated that the estimated
Hg emissions to the atmosphere were significantly
greater than known sinks, highlighting the uncer-
tainties in the global Hg mass balance. This paper
will summarize some recent advances in the authors’
assessment of natural terrestrial sources and sinks
for atmospheric Hg. Refinements in their under-
standing of air–substrate and air–foliar Hg
exchange and the impacts of these advancements
on assessment of the fate and transport of Hg in
the environment will be discussed.

2. Natural geologic sources of atmospheric Hg

Estimation of Hg releases from volcanoes is diffi-
cult due to spatial and temporal variability in activ-
ity, and the overall lack of data (Gustin and
Lindberg, 2005). Emission estimates are typically
developed by applying the few available Hg/SO2

mass ratios to measured SO2 concentrations derived
for volcanic systems. Mercury/SO2 ratios span four
orders of magnitude (cf. Pyle and Mather, 2003)
and reflect the fact that Hg and SO2 content of vol-
canic gases can vary as a function of the eruptive
phase of the system and geologic setting (Pyle and
Mather, 2003; Varekamp and Buseck, 1981, 1984,
1986). Estimates for total global volcanic emissions
range from 1 to �700 Mg/a (Nriagu, 1989; Fitzger-
ald and Lamborg, 2005; Varekamp and Buseck,
1986; Ferrara et al., 2000; Nriagu and Becker,
2003; Pyle and Mather, 2003). Using SO2 emission
data for Mt. St. Helens, the only recently active vol-
cano in the United States, Engle and Gustin (2006)
estimated that during non-eruptive years, as is
currently the case, releases were negligible, and dur-
ing eruptive years the amount released would be
dependent upon the size of the eruption (�0.05–
800 Mg/a).

Geothermally active areas exhibit spatial and
temporal variability in terms of gas flux that is influ-
enced by the age and type of geothermal system,
system heat flow and geologic host rocks. Mercury
releases are associated with three processes: (1) vol-
atile loss driven by heat flow, (2) emission from
fumaroles and hot springs as a gas phase, and (3)
release from substrate enriched in Hg as a result
of geothermal processes. Engle et al. (2006a) esti-
mated that currently active geothermal and volcanic
sources in the conterminous United States emitted
1.2–3.1 Mg/a. The only global estimate for geother-
mal emissions is that of Varekamp and Buseck
(1984) of 60 Mg/a, developed based on the average
Hg content in hot spring waters and global convec-
tive heat transport.

Factors thought to be important in controlling
air–substrate exchange associated with naturally
Hg-enriched (>100 ng Hg/g) substrates include
those that control the magnitude of the flux, and
those that control seasonal and diel variations in
flux. Substrate Hg concentration, rock type, the
presence and type of hydrothermal alteration, and
the presence of heat sources and geologic structures
have been described as influencing the overall mag-
nitude of emissions (Gustin, 2003; Rasmussen et al.,
2005). Substrate Hg concentration is a parameter
well correlated with Hg flux in Hg-enriched areas
(Rasmussen et al., 1998; Feng et al., 2005; Gustin
et al., 2003). Meteorological parameters, especially
light (Gustin et al., 2002; Zhang et al., 2001), tem-
perature (Lindberg et al., 1979; Gustin et al.,
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1997), and precipitation (Lindberg et al., 1999;
Nacht and Gustin, 2004; Song and van Heyst,
2005; Wang et al., 2005) have been clearly demon-
strated to be important in influencing Hg flux.
Recent work has shown that soil moisture plays
an important role in controlling emissions from nat-
urally Hg-enriched soils and low Hg containing soils
(Gustin and Stamenkovic, 2005; Ericksen et al.,
2005, 2006; Gustin et al., 2006; Song and van Heyst,
2005; Bahlmann et al., 2004). These four parameters
in general enhance Hg emissions, and exhibit signif-
icant variability on diel and seasonal time scales.
Since Hg flux is correlated with these parameters it
is expected that Hg air–substrate exchange also
exhibits significant variability across space and time.
It is important to consider this variability when
developing natural source emission estimates based
on point source measurements and to collect empir-
ical data that reflects this variability. Engle et al.
(2005) demonstrated that atmospheric ozone will
enhance Hg released from both Hg-enriched and
natural background soils. This suggests that spatial
variability in atmospheric chemistry can influence
substrate Hg release, with those areas impacted by
urban air pollutants potentially exhibiting exacer-
bated emissions.

3. Background soils

Soils with low or background Hg concentrations
cover large spatial areas, therefore understanding
their role as a net source or sink of atmospheric
Hg as well as the parameters controlling the
exchange is important. In most pristine ecosystems
the soil Hg pool is the largest reservoir of Hg (Krab-
benhoft et al., 2005). In areas without natural Hg-
enrichment by geologic processes, Hg in the surface
soils consists of a component derived from parent
rock material plus that contributed by wet and dry
deposition from the atmosphere. The average crus-
tal abundance for Hg in rocks (60 ppb; Wedepohl,
1995) and the mean for igneous rocks (80 ppb; Ture-
kian and Wedepohl, 1961) are indicative of indige-
nous Hg concentrations of soils. Mercury input
from the atmosphere to these soils may be seques-
tered, mobilized to aquatic systems or re-emitted.

Mercury that is supplied to terrestrial surfaces in
rain in the United States is measured at �90 sites
across the United States as part of the National
Mercury Deposition Network (MDN: nadp.sw-
s.uiuc.edu/mdn). Wet deposition amounts vary
across the United States from 2 to 20 lg/m2 a.
Limited field experiments, using the addition of spe-
cific stable Hg isotopes as HgCl2 to simulate precip-
itation inputs, suggest that only a small component
of the Hg input to ecosystems by way of precipita-
tion is released from soils immediately, and only
about 10% is emitted over a year (Hintelmann
et al., 2002; Amyot et al., 2004; Ericksen et al.,
2005). Laboratory studies also support a low
amount of immediate re-emission (Xin et al., 2007;
Matilainen et al., 2001; Schluter, 2000).

All operationally defined forms of atmospheric
Hg- elemental Hg (Hg�), reactive gaseous Hg
(RGM) and particulate Hg (Hgp) may be dry deposi-
ted. Dry deposition amounts are often estimated
using models that apply measured air concentra-
tions and estimated deposition velocities.

A standard deposition velocity for Hg� has not
been established, and is confounded by the fact that
the exchange of Hg� with most terrestrial surfaces is
bi-directional. Empirical data indicate that the dry
deposition of Hg� directly to soil and litter-covered
surfaces is an important process (Lyman et al., 2007;
Gustin et al., 2006; Ericksen et al., 2005; Kuiken
et al., 2008a,b; Zhang et al., 2001; Nacht and Gus-
tin, 2004; Engle et al., 2001). Field and laboratory
data also indicate that Hg� flux associated with
background soils can cycle between deposition and
emission on diel and seasonal time scales depending
on environmental conditions. For example, Gustin
et al. (2006) showed for a site in Nevada, that net
emission was characteristic of winter conditions
when soil moisture was high, whereas net deposition
was characteristic of summer months when the soils
were dry. Dry deposition during warmer months
has been shown to be an important flux in other
studies (Gustin et al., 2006; Ericksen et al., 2005;
Engle et al., 2001). Diel deposition and emission
has also been reported with emission being impor-
tant during light conditions and deposition occur-
ring in the dark (Ericksen et al., 2005; Gustin
et al., 2006; Zhang et al., 2001; Poissant et al.,
2005; Stamenkovic et al., submitted for publication;
Xin et al., 2007).

Dry deposition of RGM is typically modeled
based on air concentrations and deposition veloci-
ties established for HNO3 vapor. There have been
several studies that have tried to measure dry depo-
sition using the modified Bowen ratio (Lindberg and
Stratton, 1998; Poissant et al., 2005). This is difficult
due to current detection limits and analytical preci-
sion for instruments that quantify RGM. A more
recent study focused on development of a surrogate
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surface that would allow for estimation of dry depo-
sition of reactive Hg (Lyman et al., 2007). Deposi-
tion of particulate Hg has been found to be
important in both rural and urban areas (Lyman
et al., 2007; Keeler et al., 1995).

Based on the limited data available, it is hypoth-
esized that the re-emission of Hg that is wet and dry
deposited may not occur immediately after deposi-
tion, but that this Hg may be contained in the sur-
face soil pool where it may be sequestered and
eventually re-emitted to the air (cf. Xin and Gustin,
2007). The relative importance of these processes
are not understood; however, based on simple scal-
ing exercises (see below) it is possible that re-emis-
sion occurs gradually over long periods of time
depending on environmental conditions and soil
properties. Meteorological parameters, described
above, that control emissions from Hg-enriched
soils also affect emission of Hg� from low Hg con-
taining soils (Gustin et al., 2006; Zhang et al.,
2001). Another factor that will influence the amount
of Hg released is the available pool of Hg. The pool
includes indigenous Hg within the soil column that
may be transferred to the soil surface by diffusion
and mass transport (Gustin and Stamenkovic,
2005; Zhang and Lindberg, 1999; Johnson et al.,
2003) and all operationally defined forms derived
from the atmosphere. Air Hg concentrations may
also influence the direction of flux. For example,
Xin and Gustin (2007) found in laboratory experi-
ments that at air concentrations of <5 ng/m3, Hg
deposition was the dominant flux in the dark and
emissions were observed in the light; whereas at
>5 ng/m3 deposition was the dominant flux in the
light and dark. Additionally several studies have
shown that the presence of clay, Fe oxide and Fe
oxy-hydroxide minerals influence the adsorption of
atmospheric Hg by background soils (cf. Fang,
1978; Landa, 1978; Xin and Gustin, 2007).

Published Hg fluxes described for low Hg con-
taining soils range from �2 to 13 ng/m2 h (Schroe-
der et al., 1998, 2005; Poissant and Casimir, 2005;
Zhang et al., 2001; Nacht and Gustin, 2004; Erick-
sen et al., 2005, 2006). Much of these data were col-
lected during the summer and in the daytime and
therefore, do not provide an adequate data set for
assessment of diel or seasonal flux (c.f. Gustin
et al., 2006; Stamenkovic et al., submitted for pub-
lication). Recently developed empirical data indi-
cate that in order to develop accurate Hg flux
estimates, data should be collected over 24 h as a
function of seasonal climatic conditions.
In many areas litter-covered soils dominate the
surface. Kuiken et al. (2008a) have summarized
the litter–air Hg exchange occurring from an eastern
forest floor over a year. Mercury fluxes were low
with the mean daytime flux being 0.4 ± 0.5 ng/
m2 h and dominated by emission (81% of �300
thirty-min flux measurements). Using data from a
nearby MDN site, Kuiken et al. (2008a) found that
calculated annual emissions from the forest floor
could only account for 1/3 of the Hg input by way
of wet deposition. They suggested that perhaps Hg
deposited in rainfall is immediately re-emitted or
becomes sequestered in the surface litter and soils.
In another study, Kuiken et al. (2008b) measured
air–surface exchange for six forested locations along
the eastern seaboard, USA, during late spring to
early summer. They found the fluxes were low
0.2 ± 0.9 ng/m2 h and that dry deposition of Hg�
was measured 48% of the time (n = 310). Stamenko-
vic et al. submitted for publication found that fluxes
measured from litter-covered soils of tall grass prai-
rie monoliths housed in large mesocosms, were sig-
nificantly lower than those associated with bare soil
in the summer but similar in the winter.

As outlined above Hg released from background
soils can be derived from the parent material or the
atmosphere and a variety of factors, including light,
soil moisture, soil and atmospheric chemistry (air
Hg concentrations and presence of atmospheric
oxidants) can influence deposition, emission and
re-emission. Limited laboratory and field studies
indicate that RGM input by way of precipitation
will not be re-emitted immediately. This form could
be gradually reduced to Hg� which would then be
volatilized to the atmosphere (Xin et al., 2007).
Since it appears that Hg� is cycled between the soil
and air on diel and seasonal time steps, this con-
founds the ability to apply simple mass balance
models to assess the global Hg cycle and to predict
the effectiveness of regulatory controls.

4. The role of vegetation

The importance of foliar uptake of atmospheric
Hg� has been demonstrated by numerous labora-
tory and field studies (c.f. Frescholtz et al., 2003;
Ericksen et al., 2003; Millhollen et al., 2006a,b; Ras-
mussen et al., 1991). Research has shown that plant
uptake is dependent upon plant species and age, as
well as air Hg concentrations. It is now thought that
foliar uptake and sequestration is an important net
sink for atmospheric Hg� and emissions from
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foliage do not reflect translocation of Hg from the
soil through the plant but simply re-emission of
Hg deposited from the atmosphere. Using a plant
gas exchange chamber, Millhollen et al. (2006a)
showed that although plants act as a net sink for
atmospheric Hg, exchange at foliar surfaces is
dynamic with emission, deposition and re-emission
all occurring. Similarly, Graydon et al. (2006) sug-
gested that some of the Hg (II) deposited to foliage
in precipitation was rapidly reduced and re-emitted
back to the atmosphere. Other studies have shown
deposition rates measured with a dynamic chamber
to be similar to foliar uptake rates developed based
on the change in concentration over time supporting
the hypothesis that Hg in foliage is derived from the
atmosphere (Fay and Gustin, 2007; Stamenkovic
et al., submitted for publication). There are limited
data that suggest that Hg in the soil is transferred
to plant tissue. For example, Bishop et al. (1998)
estimated 3% of the methyl Hg and 11% of the total
Hg in conifer needles could be derived from the soil.
Frescholtz et al. (2003) found a statistically signifi-
cant influence of soil Hg concentrations on foliar
Hg concentrations at high (>20 lg/g) exposures.

In contrast, Lindberg et al. (1992), applied a
modified bowen ratio method for measurement of
Hg flux associated with a forest canopy and con-
cluded that emission was the dominant flux based
on a preponderance of gradient measurements (14
out of 23) indicating emission. It is possible that
measured emission simply reflected re-emission of
Hg deposited by dry and wet processes from the
atmosphere and not translocation from the soil to
the atmosphere. Deposition of Hg to foliar surfaces
was found to be the dominant flux associated with
tall grass prairie vegetation growing in large meso-
cosms (Stamenkovic et al., submitted for publica-
tion). This is in contrast to the conclusions
developed by Obrist et al. (2005) who suggested
the ecosystem was a source of atmospheric Hg.
The latter estimate has now been shown to be an
artifact of the experimental system (Stamenkovic
and Gustin, 2007).

The vegetation sink for atmospheric Hg is impor-
tant to consider in global Hg mass balance models.
The transfer of atmospheric Hg to forested ecosys-
tems by way of litterfall has been suggested to be
the largest Hg flux to forest floors (Iverfeldt, 1991;
Johnson and Lindberg, 1995; Munthe et al., 1995,
2004; St. Louis et al., 2001). Lindberg et al. (2004)
estimated that the global flux of Hg in litterfall
was �2400–6000 Mg/a. Given the size of this esti-
mate vegetation could be the missing sink in global
mass balances.

The presence of a plant canopy may also impact
the whole ecosystem flux by reducing emissions
from underlying substrates. In controlled mesocosm
studies, using Hg contaminated soils (12.3 lg Hg/g),
it was clearly demonstrated that during leaf-out Hg
flux declined as the soil was shaded by the develop-
ing leaf canopy (Gustin et al., 2004). Under the full
canopy, Hg flux was reduced 1.2 to 1.5 times rela-
tive to that occurring from unshaded soil. Zhang
et al. (2001) compared Hg emissions occurring from
soils in shaded versus open field sites and found that
fluxes were reduced in the shaded site. Recent work
by Kuiken et al. (2008a) showed that emissions from
litter-covered forest floors were higher in the winter
than in the summer and attributed this largely to
lack of the leaf canopy in winter. Litter-covered sur-
faces have also been shown to suppress emissions
from the underlying bare soils in summer (Stam-
enkovic et al., submitted for publication). These
studies illustrate the need to include seasonality in
estimates of the direction and magnitude of Hg flux
from forested systems.

5. Other natural sources and sinks

Because the volatility of Hg is well known and its
accumulation in foliage has been demonstrated, it
should come as no surprise that biomass burning
is a source of atmospheric Hg. Measurement of
Hg, CO and CO2 concentrations in plumes of fires
have been applied to estimate Hg released during
biomass burning. Global emission estimates of Hg
released are 200–1000 Mg/a (Brunke et al., 2001;
Friedli et al., 2001). Friedli et al. (2003) estimated
approximately 3.7 ± 1.9 Mg/a were released by fires
in the United States. Biwas et al. (2007) suggested
that soil burning released a significant amount of
Hg during fires based on a study conducted in the
Rocky Mountains. Engle et al. (2006b) found Hg
in foliage, bark and litter to be the dominant pool
of Hg released during three fires in Nevada/Califor-
nia, USA. Since soils contain more than 90% of the
total ecosystem Hg reservoir (Krabbenhoft et al.,
2005), the contribution of soils to emissions during
fires still needs to be resolved.

Laboratory and modeling studies have shown
that reactive halogens, can oxidize gaseous Hg� to
reactive and shorter-lived airborne Hg (II) species
(e.g. Ariya et al., 2002; Calvert and Lindberg,
2003; Lin and Pehkonen, 1999). This has been



M.S. Gustin et al. / Applied Geochemistry 23 (2008) 482–493 487
observed after polar sunrise in the Arctic and in
Antarctica where Hg� concentrations in the atmo-
sphere decreased simultaneously with increases in
air RGM and particulate Hg concentrations and
snow Hg concentrations (Lindberg et al., 2002;
Temme et al., 2003). Initially it was hypothesized
that snow in polar regions was a significant Hg sink
(e.g. Schroeder et al., 1998; Lindberg et al., 2002;
Ebinghaus et al., 2002). However, recent work has
shown that the size of this net sink is on the order
of a few hundred Mg/a after accounting for re-emis-
sion (e.g. Lindberg et al., 2002; Schroeder et al.,
2003; Skov et al., 2004). Other evidence suggests
that in urban areas, similar halogen reactions med-
iated by oxidants such as the hydroxyl radical may
occur along with direct interactions with atmo-
spheric oxidants resulting in conversion of Hg� to
RGM (c.f. Weiss-Penzias et al., 2003; Stamenkovic
et al., 2007). It has also been suggested that oxida-
tion and dry deposition of gaseous Hg over the
oceans and seas in more temperate regions of the
globe may contribute to a shorter residence time
of Hg� than predicted (e.g. Mason and Sheu,
2002; Hedgecock and Pirrone, 2001, 2004).

6. Estimating the contribution of Hg to the

atmosphere from natural sources

Scaling up emissions measured from areas natu-
rally enriched in Hg to larger areas has been done
using empirical data to develop algorithms between
Hg flux and environmental or substrate parame-
ters. Area average fluxes of 2–440 ng/m2 h (2–
110 kg/a) for regions of �1–900 km2 have been
reported (Gustin, 2003; Rasmussen et al., 1998;
Coolbaugh et al., 2002; Zehner and Gustin, 2002;
Ferrara et al., 1998). The size of the Hg-mineral-
ized area included in the scaling exercise can influ-
ence the area average flux obtained as small areas
of substrate with high levels of Hg enrichment will
have greater amounts of Hg released than the sur-
rounding terrain with low to background Hg con-
centrations. Rasmussen et al. (2005) offered some
cautionary notes regarding estimating emissions
from areas of natural enrichment. They noted that
use of substrate Hg concentrations alone are not
adequate for scaling up Hg emissions for: (1) the
substrate Hg concentration versus flux relationship
falls apart at low Hg concentrations, (2) there are
other factors that impact emissions to a compara-
ble degree that need to be considered, and (3) the
databases needed to develop the flux estimates
are limited and will impact the accuracy of flux
estimates.

In this section estimates of natural source emis-
sions developed at regional scales are discussed
and revised and the values obtained compared to
estimates of wet and dry deposition. Empirical data
used as the basis for these scaling exercises are lim-
ited in terms of spatial and temporal resolution.
Spatial differences in deposition must also be con-
sidered. Lyman et al. (2007) found that wet and
dry deposition data collected at two rural MDN
sites in Nevada, similar in setting and �200 km
apart, could differ by 2-fold on a seasonal and
annual basis (Lyman et al., 2007).

Zehner and Gustin (2002) compiled flux data,
substrate surface Hg concentrations and LAND-
SAT imagery to develop a Hg emission estimate
of 5–10 Mg/a for the state of Nevada, USA with
2.2 Mg being derived from the naturally enriched
areas. The range in values for the state reflects the
fact that the emission estimate depended on the
amount of Hg input by wet and dry processes that
was assumed to be re-emitted. They applied a flux
of 3.5 ± 1.2 ng/m2 h to the land area considered to
have background Hg concentrations. Here we revise
the Zehner and Gustin (2002) estimate based on
new flux data developed for natural background
soils (Gustin et al., 2006; Ericksen et al., 2006),
and using wet and dry deposition estimates devel-
oped for two MDN sites in Nevada. Applying an
area flux of 0.5 ng/m2 h for background soils, a
statewide emission estimate of 1.2 Mg/y was
obtained for the low Hg containing areas resulting
in a Nevada flux of 3.4 Mg/y. Comparing these
emissions with the annual estimate of Hg input via
wet and dry deposition at two MDN sites developed
by Lyman et al. (2007) for Nevada of 1.5 Mg/y
(Table 1) shows that ½ of the emissions could be
re-emission of Hg.

Another method for estimating Hg emissions
from natural sources over a region was applied by
Gustin et al. (2000) who used a database with loca-
tions of Hg deposits and occurrences and applied
emission rates to these areas based primarily on
the degree of mineralization and economic Hg pro-
duction (Table 2). They obtained an emission esti-
mate of 10 Mg/a for Hg mineralized areas along
the western coast of North America (Nevada, Cali-
fornia, Washington, Oregon, Idaho, Utah, Arizona,
Alaska and Mexico). This estimate should be con-
sidered conservative for it did not account for emis-
sions from areas of other types of mineralization



Table 1
Summary of estimates for emission and deposition provided in the text

Area considered Emission estimate
(Mg/a)

Deposition estimate
(Mg/a)

References

United States
Volcanoes 0 Engle and Gustin (2006)
Geothermal Areas 1.2–3 Engle et al. (2006a)
Fires 3.6 ± 1.9 Friedli et al. (2003)
Entire land area 44–150 120 Ericksen et al. (2006)

Nevada
Hg-enriched areas 2.1–2.4 Gustin et al. (2000)/Zehner and Gustin (2002)
Background and enriched

substrates
3.6–10 1.5–3.5 Zehner and Gustin (2002)/this paper/Lyman

et al. (2007)

Western United Statesa

Hg-enriched areas 10–20 Gustin et al. (2000)/this papera

Background and enriched
substrates

46–90 40 This papera/Lyman et al. (2007)

United States Anthropogenic Point Source emissions
150 Seigneur et al. (2004)

a States include Arizona, California, Idaho, Nevada, Oregon, Utah and Washington.

Table 2
Models to estimate Hg emissions associated with areas of Hg mineralization in the Western United States

Area type 2000 Model 2007 Model 1 2007 Model 2 References

Area Flux Area Flux Area Flux

>1000 Flasks 25 30 200 15 100 15 Engle et al. (2001)/Coolbaugh et al. (2002)/Gustin et al. (2002)
100–1000 Flasks 20 30 100 10 100 10 Engle and Gustin (2002)
<100 flasks 15 30 100 5 50 5 Engle and Gustin (2002)
Prospect or occurrence 100 10 100 5 50 5 Engle and Gustin (2002)/Coolbaugh et al. (2002)

Area types are designated based on their economic production of Hg in terms of flasks produced. One flask is 76 pounds or �170 kg of Hg.
An area designated as a prospect or occurrence is one where Hg was found but was not of high enough concentration to be extracted for a
profit. The 2000 model is that described by Gustin et al. (2000) and the 2007 models were both developed using area and flux estimates
developed based on field studies listed under references.
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that have Hg associated such as Au and Ag depos-
its. Using this data set emissions for mineralized
areas in Nevada were 2.1 Mg/a. This value is com-
parable to that developed for naturally enriched
areas in Nevada by Zehner and Gustin (2002). In
this paper the Gustin et al. (2000) estimate is refined
using a similar approach but applying area flux esti-
mates based on empirical data developed for Hg
mineralized areas in the Western USA region (Table
1). A flux of 0.5 ng/m2 h was applied to the back-
ground soils surrounding the areas of natural
enrichment which comprised 96% of the total area.
The estimated emission for areas of Hg mineraliza-
tion alone was 11.4–19.3 Mg/a depending on the
model used (Table 1) with an additional 35 Mg/a
being emitted from the surrounding area of back-
ground soils. Note that the area of background soils
is quite large and if flux for this land area is changed
only slightly to 1 ng/m2 h the resulting flux is
70 Mg/a! Using the Lyman et al. (2007) deposition
estimate for Nevada (which may not be applicable
to other western states) the total deposition over
the area of scaling is on the order of 40 Mg/a. Thus,
deposition is roughly comparable to emission from
background surfaces.

Ericksen et al. (2005) developed a crude estimate
for Hg emissions from the conterminous United
States using a mean empirically derived flux of
0.9 ± 0.7 ng/m2 h for background substrates based
on data collected during the summer from Midwest-
ern and western United States locations. They
assumed that the states of Washington, Oregon,
California, Nevada and New Mexico were located
within the global mercuriferous belt and applied
the mean flux of 4.2 ng/m2 h developed by Zehner
and Gustin (2002) for Nevada. Because the number
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for Nevada is most likely too high (as discussed
above) and the background soil flux applied was
based solely on summer data, there is significant
uncertainty regarding the emission estimate of
95 Mg/a obtained (range 44–150 Mg/a). To place
this emission estimate within the context of deposi-
tion, Ericksen et al. (2005) applied Hg wet deposi-
tion amounts from the MDN extrapolated across
the United States (�60 Mg/a). If the dry deposition
flux is 50–100% of the calculated wet deposition
inputs then emission and deposition estimates are
comparable. The vegetation component was not
considered in the scaling exercise of Ericksen et al.
(2005). If included, since vegetation is an important
sink for atmospheric Hg and forest and litter cover
have been shown to reduce emissions from soils,
forest and grassland cover will increase net deposi-
tion to an area. Since Hg assimilated by vegetation
is a component of dry deposition this sink should be
included in dry deposition estimates.

None of the emission estimates above take into
account the spatial and temporal variability in flux
that may occur due to environmental conditions.
Spatially-explicit computer simulation modeling
provides a mechanistic approach for scaling spa-
tially and temporally limited field measurements to
larger areas. Gbor et al. (2006) developed a Hg
emission estimate for eastern North America using
the CMAQ-Hg model. This study (1) assumed that
transpiration from plants was important; (2) devel-
oped a soil Hg inventory that was gridded over their
research domain; and (3) assumed that soil temper-
ature was the major meteorological factor control-
ling emissions. All of these parameters have
significant uncertainty, however the fact that they
attempted to scale Hg fluxes using more than just
area types and estimated fluxes is admirable. Gbor
et al. (2006) obtained a simulated average flux for
eastern North America of 1.8–3.7 ng/m2 h, with
the maximum occurring in the summer. Using a
wet deposition input of 15 lg/m2 a, the estimated
hourly input would be 1.7 ng/m2 which is at the
low end of their range in emission rates.

Lastly, a crude way of calculating global natural
source emissions is to apply one flux value to the
global Hg belts. Lindqvist et al. (1991) applied a flux
of 1 ng/m2 h and obtained an annual flux of
500 Mg. If the flux obtained for Nevada in Zehner
and Gustin (2002) is applied an annual flux of
1500 Mg is obtained. If the revised estimate for
Nevada presented in this paper (1.5 ng/m2 h) is used
the annual flux is �750 Mg Hg/a.
7. Conclusions

The Hg research community is making steady
progress towards understanding natural source Hg
emissions. It appears that the amount emitted from
volcanoes and geothermal areas from the contermi-
nous United States is small (�3 Mg/a) while releases
from naturally Hg-enriched substrates is at the least
10–20 Mg/a. This range in values is based solely on
areas of Hg mineralization in the western USA and
should not be considered representative of the entire
country. Additionally, the empirical databases used
to develop this estimate are spatially and temporally
limited.

In order to develop estimates of the regional and
global significance of natural source emissions, Hg
flux associated with natural background soils must
be considered in addition to flux from enriched
areas. Empirical data has shown that soils with
low Hg concentrations can act as a sink or source
for atmospheric Hg and due to their large spatial
coverage small variations in fluxes applied in scaling
can result in large flux differences. In addition, soil
and foliar surface atmospheric Hg exchange are
influenced by environmental conditions and this
variation needs to be represented in scaling algo-
rithms and emission estimates. All flux estimates
must be placed within the context of wet and dry
deposition when attempting to understand the sig-
nificance of emissions. Data presented herein sug-
gest that emissions from low Hg soils and litter
reflects dominantly re-emission of Hg deposited
from the atmosphere and emission and deposition
over a year may balance each other. With climate
change, the overall exchange of Hg between the
air and the soils could result in more Hg in the air
or more being sequestered in terrestrial ecosystems.
It is also fairly clear that vegetation is an important
net sink for atmospheric Hg. However foliar sur-
faces can also act as a dynamic surface of exchange
for atmospheric Hg suggesting that measurements
of foliar fluxes and over forest canopies will reflect
the net flux and may not allow for adequate assess-
ment of the input to forest floors. Foliar transfer of
atmospheric Hg to substrates in litter fall estimated
by Lindberg et al. (2004) indicates that vegetation is
an important (and perhaps the missing) sink in the
global Hg mass balance.

The simple exercises in scaling emissions from
natural sources indicate that deposition inputs and
re-emission of Hg derived from the atmosphere
must be considered when making terrestrial source
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estimates. If Hg is regularly recycled between sub-
strates, foliage and the air, as recent data suggest,
results of anthropogenic source controls may not
be immediately realized except in those areas where
local emissions dominate deposition. Regular
exchange of Hg between the air and background
substrates and foliage would also produce a homog-
enous air Hg concentration that would result in an
apparent calculated long lifetime (year) for atmo-
spheric Hg.

Acknowledgements

The following agencies provided support for re-
search presented in this manuscript – US EPA
STAR and EPSCoR programs, EPRI, National Sci-
ence Foundation-Atmospheric Sciences Program,
and the US Geological Survey. We also thank our
many collaborators and graduate and undergradu-
ate students whose diligent work has helped move
the research forward. Rekha Pillai assembled GIS
databases for Hg scaling estimates.

References

Amyot, M., Southworth, G., Lindberg, S.E., Hintelmann, H.,

Lanlonde, J.D., Orgrinc, N., Poulain, A.J., Sandilands, K.A.,

2004. Formation and evasion of dissolved gaseous mercury in

large enclosures amended with 200HgCl2. Atmos. Environ. 38,

4279–4289.

Ariya, P.A., Khalizov, A., Gidas, A., 2002. Reactions of gaseous

mercury with atomic and molecular halogens: kinetics,

product studies, and atmospheric implications. J. Phys.

Chem. A 106, 7310–7320.

Bahlmann, E., Ebinghaus, R., Ruck, W., 2004. The effect of soil

moisture on the emission of mercury from soils. RMZ-Mater.

Geoenviron. 51, 787–790.

Bishop, K.H., Ying-Hua, L., Munthe, J., Dambrine, E., 1998.

Xylem sap as a pathway for total mercury and methylmercury

transport from soils to tree canopy in the boreal forest.

Biogeochem. 40, 101–113.

Biwas, A., Blum, J.D., Klaue, B., Keeler, G.J., 2007. Release of

mercury from rocky mountain forest fires. Global Biogeo-

chem. Cycles 21, GB1002.

Brunke, E.G., Labuschagne, D., Slemr, F., 2001. Gaseous

mercury emissions from a fire in the Cape Peninsula, South

Africa. Geophys. Res. Lett. 28, 1483–1486.

Calvert, J.G., Lindberg, S.E., 2003. A modeling study of the

mechanism of the halogen-ozone-mercury homogeneous

reactions in the troposphere during the polar spring. Atmos.

Environ. 37, 4467–4481.

Coolbaugh, M.F., Gustin, M.S., Rytuba, J.J., 2002. Annual

emissions of mercury to the atmosphere from three natural

source areas in Nevada and California. Environ. Geol. 42,

338–349.

Ebinghaus, R., Kock, H.H., Temme, C., Einax, J.W., Löwe,
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